
Understanding what is really going on and how to use it properly
or

“I do not think it means what you think it means”

June 26, 2017 • Room #204

David Allen

Demystifying Async-Await

Asynchronous Programming
Asynchronous programming allows CPU time to be shared across
multiple processes.
• This is vital where a process needs to be responsive or meet certain timing

requirements, and where multiple ‘simultaneous’ actions need to be
supported.

• In .Net the asynchronous processing control elements are:
• Thread
• ThreadPool
• Task

July 10, 2017 2

Threads
Threads are the smallest element of processing control
• Represent & maintain the actual OS resources required to run processes:

• Stack
• Kernel resources etc.

• Allows most atomic level of control:
• Start, Stop, Abort, Suspend, Resume etc.
• Observe state
• Set properties

• Threads are costly
• Consumes memory for Stack, Heap etc.
• CPU overhead for context switching etc.
• Takes time to instantiate a Thread

July 10, 2017 3

ThreadPools
ThreadPools address the issue of resources associated with Threads
• A collection, or ‘pool’ of pre-created Threads maintained by the CLR
• When running a process on a ThreadPool, it provides one of its managed

Threads on which to run the code
• Avoids overhead of dynamically creating Threads
• Avoids overhead associated with too many Threads
• Very little control - can control size of the pool, but little else
• Submitting too many long running items can cause new items to be blocked

• No easy way to get results back from a process run via a ThreadPool or
directly on a Thread

July 10, 2017 4

Tasks

July 10, 2017 5

Tasks
DO NOT
• Create or store Threads
• Tasks do not directly schedule code

• The code is scheduled and managed by a TaskScheduler.

July 10, 2017 6

Tasks
DO
• Hold information
• Can pass back a result. Task has a Generic version Task<TResult> which

can pass back a result of Type TResult from the asynchronously run code
• Include the following Properties (amongst others):

• Result - contains the returned result of Type Tresult (only for Task<TResult>)
• Status - contains a TaskStatus enumerable representing the Task’s current

state: Created, Running, RanToCompletion, Cancelled, Faulted,
WaitingToRun, WaitingForActivation,
WaitingForChildrenToComplete

• Exception - contains an AggregateException that caused the Task to end
prematurely or null if there is no Exception

July 10, 2017 7

Tasks
• There are two categories of Task

• Delegate Tasks contain a reference to code that will be run asynchronously.
• Promise Tasks do not have their own code, but represent other code or events

July 10, 2017 8

• Delegate Tasks may be Cancelled by passing a CancellationToken

Tasks
• There are two categories of Task

• Delegate Tasks contain a reference to code that will be run asynchronously.
• Promise Tasks do not have their own code, but represent other code or events

July 10, 2017 9

• Delegate Tasks may be Cancelled by passing a CancellationToken

Tasks
• There are two categories of Task

• Delegate Tasks contain a reference to code that will be run asynchronously.
• Promise Tasks do not have their own code, but are ‘Virtual Tasks’ that represent

other code or events

July 10, 2017 10

• Delegate Tasks may be Cancelled by passing a CancellationToken
• This actually cancels the scheduling only, not the code to be run
• To cancel the code to be run, the code (delegate) must explicitly observe the

Cancelation Token

• Task provides a number of Continuation Methods which control the
behaviour of the code that follows the Task definition, the context in which it
runs, and the behaviour of the calling Thread

Task Scheduler
• The .Net default TaskScheduler:

• Utilizes the Threadpool to run the delegated code
• Maintains global and local queues of Tasks, which are used to queue related

Tasks onto the same Threads reducing context switching.
• When the item on a Thread completes, the next item (Task) in its queue runs
• Implements ‘Work Stealing’ to maximize Thread use.
• Very sophisticated and suitable in vast majority of scenarios

• The .Net CLR also provides alternative TaskScheduler that executes Tasks
on the synchronization context of a specified target

• Can also create and schedule Tasks using a Custom TaskScheduler
• Tasks using default TaskScheduler shouldn’t be used for long-running code

• Task provides an option to create a new, dedicated Thread on which to run its
referenced code - this should be used for long running code

July 10, 2017 11

Tasks and Asynchronous Behaviour

July 10, 2017 12

• Tasks	are	not	Threads,	they	just	hold	information

WaitingToRunWaitingForActivationRunning

TASK ALLOCATED	THREADCALLING	CODE TASK	SCHEDULER

RanToCompletion

Result

Create	and	Run	
Some	Delgate Task

TaskScheduler
assigns	Task	to	
Thread,	removes	
from	queue,	and	
runs	code	on	

Thread

Status:

Result: Null

TaskScheduler
Queues	Task

Code	completes	and	
returns	Result

Code	running	in	
second	Thread

Other	code	
runs	on	calling	

Thread

TaskScheduler
frees	up	Thread

Maybe	code	Waits	
on	Task	or	Awaits	

Task

Result	now	
available	and	code	
continues	to	run

Creating Tasks
• Don’t use Task Constructors

• There are almost no circumstances where they are needed

• The Task is almost always needed to be scheduled immediately
• Use Task.Run or Task.Factory.StartNew to create a Delegate Task

• Task.Run is the preferred mechanism
• Uses default TaskScheduler
• Is async aware

• For more control, use Task.Factory.StartNew
• By default uses the Current TaskScheduler, but can specify a different one
• Not async aware
• If you have an async delegate, it will return Task<Task<TResult>> rather than

Task<TResult>
• Can’t await Task<Task> have to use task.Unwrap() or use await await

July 10, 2017 13

Creating Tasks

July 10, 2017 14

Task<Task>	task	=	Task.Factory.StartNew(async ()	=>
{
while	(IsEnabled)
{
await	FooAsync();
await	Task.Delay(TimeSpan.FromSeconds(10));

}
},	TaskCreationOptions.LongRunning);

Task	actualTask =	task.Unwrap();
await	actualTask;

Creating Tasks
• If you’re using async-await, always use Task.Run if you can

• If you’re wrapping another asynchronous API or event, use
Task.Factory.FromAsync or TaskCompletionSource<TResult>
• Use to wrap old style asynchronous processes

• Usually you’ll use the async keyword to create, or reference, a virtual
Promise Task.
• Rarely need to explicitly create Promise Task
• Task.Delay is the most common scenario for creating a Promise Task

July 10, 2017 15

Task Creation Options
When creating a Task with Task.Factory.StartNew() and
Task.FromAsync you can specify creation options
• LongRunning
• PreferFairness
• HideScheduler
• RunContinuationsAsynchronously
• AttachToParent
• DenyChildAttach
• None

Should not use LongRunning option in async-await world
• Consumes resources with no benefit

July 10, 2017 16

Task Waiting Methods
Tasks has a number of Synchronous Waiting methods
• Blocks the calling thread until condition met
• Do not use with Promise Tasks or awaited Tasks
• Common cause of deadlocks and async methods not apparently completing

Do NOT use with async-await
• Available Metods:

• Wait – waits until Task complete
• WaitAll – waits until all Tasks in a collection have completed
• WaitAny – waits until one of the Tasks in a collection has completed
• Result – has same effect as Wait but returns the Result, wraps exception
• GetAwaiter().GetResult() – same as Result but doesn’t wrap exceptions

July 10, 2017 17

Tasks Continuation Methods
Attaches a delegate that runs after a Task has completed
• task.ContinueWith - attaches code or delegate as a continuation to a Task

to run more code once it has completed. Returns Task
or Task<TResult>

• Task.Factory.ContinueWhenAny - executes single continuation when any of
a collection of Tasks completes. Returns
Task.

• Task.Factory.ContinueWhenAll - executes single continuation when all of a
collection of Tasks complete. Returns Task

• Task.WhenAll - returns a task that completes when all of a set of
tasks have completed. Async aware. Returns
Task or Task<TResult[]>

• Task.WhenAny - returns a task that completes when any of a set of
tasks has completed. Async aware. Returns the Task
that completed July 10, 2017 18

Async - Await
Await
• Await is an operator that takes an awaitable expression
• Task and Task<T> are awaitables. They can be awaited
• Do not need the async keyword to make them awaitable
• Can construct custom awaitables
• Awaitables must implement

• GetAwaiter()
• Must return an object the implements INotifyCompletion
• Returned object must also expose

• bool IsCompleted { get; }
• void OnCompleted(Action continuation)
• TResult GetResult()

July 10, 2017 19

Async - Await
Await
• Await examines the awaitable object
• If completed, immediately returns and method continues running
• If not completed:

• Schedules the remainder of the method to run when awaitable completes
• Returns from the current method to the calling code
• When awaitable does complete, runs the remainder of the method
• Behaves analogously to wrapping the remainder of the method in a

ContinueWith, but returns control to the calling thread and implements a callback
to execute when awaitable completes

• Default awaitables (Tasks) capture Synchronization Context and the
remainder of the method will execute on that context when it runs

• Await unwraps the result from a completed generic awaitable

July 10, 2017 20

Async - Await
Async
• Async is just syntactical candy for the compiler to act on a method

• Forces the return type of a method to be Task, Task<TResult>, or void
• Allows the method to contain await statements
• Causes a compilation error if there is an await statement in a method without the

async keyword
• Flags compiler warning of an async marked method does not contain an await

statement
• Wraps the returned type in a Task

• Beginning of async method is executed just like any other method
• Flags compiler warning of an async marked method does not contain an await

statement

• Convention to append “Async” suffix to method name

July 10, 2017 21

Async - Await
Async
• The supported return types are:

• Task
• Task<TResult>
• void

• Task and Task<TResult> can be awaited, void can not
• Return Task if no value to be returned
• Return Task<TResult> to return a value
• Only return void for high level event handlers

DO NOT USE VOID with async-await pattern

July 10, 2017 22

Async – Await: Control Flow

23

private	void	DoSomeStuff()	{
//	some	synchronous	work
return;

}

async Task<int>	AccessTheWebAsync(){
HttpClient client	=	new	HttpClient();

Task<string>	t2	=	client.GetStringAsync("http://microsoft.com");

DoSomeStuff();

string	content	=	await	t2;

return	content.Length;
}

private	async void	StartButton_Click()
{

int length	=	await	AccessTheWebAsync();

UpdateView(length);
}

Event	StartButtonClick
+=	StartButton_Click();

U
I	M

es
sa
ge
	P
um

p

UI	Context
private	async void	StartButton_Click()
{

int length	=	await	AccessTheWebAsync();

UpdateView(length);
}

private	async void	StartButton_Click()
{

int length	=	await	AccessTheWebAsync();

UpdateView(length);
}

async Task<int>	AccessTheWebAsync(){
HttpClient client	=	new	HttpClient();

Task<string>	t2	=	client.GetStringAsync("http://microsoft.com");

DoSomeStuff();

string	content	=	await	t2;

return	content.Length;
}

async Task<int>	AccessTheWebAsync(){
HttpClient client	=	new	HttpClient();

Task<string>	t2	=	client.GetStringAsync("http://microsoft.com");

DoSomeStuff();

string	content	=	await	t2;

return	content.Length;
}

public	Task<string>
HttpClient.GetStringAsync(string	url){
//	Asynchoncous IO	process

}

async Task<int>	AccessTheWebAsync(){
HttpClient client	=	new	HttpClient();

Task<string>	t2	=	client.GetStringAsync("http://microsoft.com");

DoSomeStuff();

string	content	=	await	t2;

return	content.Length;
}

async Task<int>	AccessTheWebAsync(){
HttpClient client	=	new	HttpClient();

Task<string>	t2	=	client.GetStringAsync("http://microsoft.com");

DoSomeStuff();

string	content	=	await	t2;

return	content.Length;
}

private	void	DoSomeStuff()	{
//	some	synchronous	work
return;

}

async Task<int>	AccessTheWebAsync(){
HttpClient client	=	new	HttpClient();

Task<string>	t2	=	client.GetStringAsync("http://microsoft.com");

DoSomeStuff();

string	content	=	await	t2;

return	content.Length;
}

private	void	DoSomeStuff()	{
//	some	synchronous	work
return;

}

async Task<int>	AccessTheWebAsync(){
HttpClient client	=	new	HttpClient();

Task<string>	t2	=	client.GetStringAsync("http://microsoft.com");

DoSomeStuff();

string	content	=	await	t2;

return	content.Length;
}

async Task<int>	AccessTheWebAsync(){
HttpClient client	=	new	HttpClient();

Task<string>	t2	=	client.GetStringAsync("http://microsoft.com");

DoSomeStuff();

string	content	=	await	t2;

return	content.Length;
}

private	async void	StartButton_Click()
{

int length	=	await	AccessTheWebAsync();

UpdateView(length);
}

async Task<int>	AccessTheWebAsync(){
HttpClient client	=	new	HttpClient();

Task<string>	t2	=	client.GetStringAsync("http://microsoft.com");

DoSomeStuff();

string	content	=	await	t2;

return	content.Length;
}

async Task<int>	AccessTheWebAsync(){
HttpClient client	=	new	HttpClient();

Task<string>	t2	=	client.GetStringAsync("http://microsoft.com");

DoSomeStuff();

string	content	=	await	t2;

return	content.Length;
}

private	async void	StartButton_Click()
{

int length	=	await	AccessTheWebAsync();

UpdateView(length);
}

private	async void	StartButton_Click()
{

int length	=	await	AccessTheWebAsync();

UpdateView(length);
}

Creating Async Methods From Synchronous Methods
• .Net framework and libraries provides many async methods
• If you need to create your own

• Wrap the code in an Asynchronous Task
• Refactor code to use less resources if possible
• Use Task.Run to wrap the code where possible

July 10, 2017 24

public	async Task<TResult>	NewAsyncMethodAsync()	
{

return await	Task.Run(()	=>
{

return OldSyncMethod();
});

}

public	TResult OldSyncMethod()	
{

……..
}

Synchronization Context
• Built in awaitables (Task) capture the Synchronization Context – the context

in which the code is running
• All Task are executed on a Synchronization Context
• Synchronization Context is a collection of information that defines the

environment on which code is executed. It could reference:
• Thread
• ThreadPool
• TaskScheduler

• Current Synchronization Context is exposed as a static property of the
SynchronizationContext class:
• SynchronizationContext.Current
• Not all Threads have a current Synchronization Context in which case it is null

July 10, 2017 25

Synchronization Context
• UI Thread is Synchronization Context for UI code
• A new Delegate Task will use default TaskSheduler and the Synchronization

Context used by the delegate will reference a ThreadPool Thread
• Running UI code on this will cause an exception

• Could create Task using alternative TaskScheduler and pass current
Synchronization Context
• All delegate code will run on the UI Thread, so its as if it was synchronous

• Could capture current SynchronizationContext (UI Thread) before the Task is created
and run any UI updates on that context. .Net frameworks provide convenience
methods to do this:
• .Net: Invoke Post on the captured context
• Xamarn.Forms: Device.BeginOnMainThread

July 10, 2017 26

• iOS: InvokeOnMainThread
• Android: RunOnUIThread

Synchronization Context
• If current Synchronization Context is null, then awaiting a Task will create a

new Synchronization Context on the ThreadPool.
• In most cases there is no need to sync back to the Synchronization Context

of the calling thread.
• This can be controlled by controlling how the awaitable captures the

Synchronization Context
• Task has a ConfigureAwait(bool captureContext) method

• If set to true, it will act in the default manner and capture the current context
• If set to false, it will create a new one as if the current one was null

• Unless you have a reason to capture the context and sync back, it is good
practice to set ConfigureAwait to false:
• var result = await GetDataAsyc(stringRef).ConfigureAwait(false);

July 10, 2017 27

Creating Async Methods Revisited
• Once you have used ConfigureAwait(false) at some point within a method, it

is good practice to use it for every awaited method from that point on
• As you don’t know the context in which Library methods will be used, you

should configure any awaits contained to false.
• If you wrap a synchronous method, its good practice to

ConfigureAwait(false)

July 10, 2017 28

public	async Task<TResult>	NewAsyncMethodAsync()	
{

return await	Task.Run(()	=>
{

return OldSyncMethod();
}).ConfigureAwait(false);

}

public	TResult OldSyncMethod()	
{

……..
}

CODE DEMO

July 10, 2017 29

Synchronization Context

https://evolve.xamarin.com/session/56e1fe9ebad314273ca4d811
See	James	Clancey’s talk	at	Xamarin	Evolve	2016	for	more	complete	example	of	code	demo	

Awaiting Multiple Tasks
Use Task.WhenAll or Task.WhenAny to await completion of multiple
Tasks
• Task.WhenAll - returns a task that completes when all of a set of passed

tasks have completed. Returns Task or Task<TResult[]>
• Task = Task.WhenAll(params Task []);
• Task = Task.WhenAll(IEnumerable<Task>);
• Task<TResult []> = Task<TResult>.WhenAll(params Task<TResult> []);
• Task<TResult []> = Task<TResult>.WhenAll(Ienumerable<Task<TResult>>);

July 10, 2017 30

var client	=	new	HttpClient();
Task<string>	t1	=	client.GetStringAsync("http://example.com")
Task<string>	t2	=	client.GetStringAsync("http://microsoft.com");
string[]	results	=	await	Task.WhenAll(t1,	t2);
Console.WriteLine(“Result0	=	“	+	results[0]	+	“		and	Result1	=	“	+	results[1]);

var client	=	new	HttpClient();
string[]	results	=	await	Task.WhenAll(client.GetStringAsync("http://example.com"),	

client.GetStringAsync("http://microsoft.com"));
Console.WriteLine(“Result0	=	“	+	results[0]	+	“		and	Result1	=	“	+	results[1]);

Awaiting Multiple Tasks
• Task.WhenAny - returns a task that completes when any one of a set of

passed tasks have completed. Returns Task or
Task<TResult[]>

• Task = Task.WhenAny(params Task []);
• Task = Task.WhenAny(IEnumerable<Task>);
• Task<TResult []> = Task<TResult>.WhenAny(params Task<TResult> []);
• Task<TResult []> = Task<TResult>.WhenAny(Ienumerable<Task<TResult>>);

July 10, 2017 31

var client	=	new	HttpClient();
string	result	=	await	await Task.WhenAny(client.GetStringAsync("http://example.com"),					

client.GetStringAsync("http://microsoft.com"));
Console.WriteLine(“The	first	result	to	be	returned	was	“	+	result);

var client	=	new	HttpClient();
Task<string>	t1	=	client.GetStringAsync("http://example.com");
Task<string>	t2	=	client.GetStringAsync("http://microsoft.com");
Task<string>	resultTask =	await	Task.WhenAny(t1,	t2);
string	result	=	await	resultTask;	
Console.WriteLine(“The	first	result	to	be	returned	was	“	+	result);

Awaiting Multiple Tasks
• You can use LINQ with Task.WhenAll and TaskWhenAny Task.WhenAll

• Pass an IEnumerable as a LINQ statement

July 10, 2017 32

IEnumerable<string>	urls =	…..

var client	=	new	HttpClient();
string[]	results	=	await	Task.WhenAll(urls.Select(url =>	client.GetStringAsync(url)));
Console.WriteLine(“Result0	=	“	+	results[0]	+	“		and	Result1	=	“	+	results[1]);

Task Completion Source
• If you need to create something such as an Asynchronous Event or Async

Queue, you can use TaskCompletionSource
• TaskCompletionSource<TResult> wraps a Task and allows its state to be

manually set:
• Create the TaskCompletionSource<TResult>
• Run some asynchronous code within which we set the result of the

TaskCompletionSource (which sets it status)
• Return the Task the TaskCompletionSource wraps, like any other Task

• When TaskCompletionSource is instantiated, the status of its Task is
WaitingForActivation
• Can call SetResult, SetCancelled, and SetException (or use Try versions) on the

TCS
• Appropriately sets the Tasks status and corresponding properties

July 10, 2017 33

Asynchronous Event Handler

July 10, 2017 34

public	Task<float>	GetSignalStrengthAsync ()
{
var tcs =	new	TaskCompletionSource<float>	();

var centralManager =	new	CBCentralManager(DispatchQueue.CurrentQueue);

centralManager.DiscoveredPeripheral +=	(object	sender,	CBDiscoveredPeripheralEventArgs e)	
=>	{tcs.SetResult(e.RSSI.FloatValue);

};

centralManager.FailedToConnectPeripheral +=	(object	sender,	CBPeripheralErrorEventArgs e)	
=>	{tcs.TrySetException(new	Exception("Failed	to	connect	to	device"));

};

return	tcs.Task;
}

public	Task<float>	GetSignalStrengthAsync ()
{
var tcs =	new	TaskCompletionSource<float>	();

var centralManager =	new	CBCentralManager(DispatchQueue.CurrentQueue);

centralManager.DiscoveredPeripheral +=	(object	sender,	CBDiscoveredPeripheralEventArgs e)	
=>	{tcs.SetResult(e.RSSI.FloatValue);

};

public	Task<float>	GetSignalStrengthAsync ()
{
var tcs =	new	TaskCompletionSource<float>	();

var centralManager =	new	CBCentralManager(DispatchQueue.CurrentQueue);

centralManager.DiscoveredPeripheral +=	(object	sender,	CBDiscoveredPeripheralEventArgs e)	
=>	{							tcs.SetResult(e.RSSI.FloatValue);

};

centralManager.FailedToConnectPeripheral +=	(object	sender,	CBPeripheralErrorEventArgs e)	
=>	{tcs.TrySetException(new	Exception("Failed	to	connect	to	device"));

};

return	tcs.Task;
}

public	Task<float>	GetSignalStrengthAsync ()
{
var tcs =	new	TaskCompletionSource<float>	();

var centralManager =	new	CBCentralManager(DispatchQueue.CurrentQueue);

centralManager.DiscoveredPeripheral +=	(object	sender,	CBDiscoveredPeripheralEventArgs e)	
=>	{tcs.SetResult(e.RSSI.FloatValue);

};

centralManager.FailedToConnectPeripheral +=	(object	sender,	CBPeripheralErrorEventArgs e)	
=>	{tcs.TrySetException(new	Exception("Failed	to	connect	to	device"));

};
var bluetoothService =		new	BlueToothService();
float	bluetoothStrength =	await	bluetoothService.GetSignalStrength();

• Can make an Event Async by wrapping it in a TaskCompletionSource

Cheat Sheets – How To

July 10, 2017 35

Objective Synchronous approach Async Approach

Get	the	result	of	a	completed	Task task.Result await	task

Wait	for	a	Task	to	complete task.Wait await	task

Wait for	one	of	a	collection	of	Tasks	to	
complete	and	retrieve	result

Task.WaitAny or
Task.Factory.WaitAny

await	await
Task.WhenAny

Wait	for	all	of	a	collection	of	Tasks	to	
complete	and	retrieve	the	results

Task.WaitAll or
Task.Factory.WaitAll

await	Task.WhenAll

Wait	a	period	of	time Thread.Sleep await	Task.Delay

Create	a	Task Task constructor Task.Run or
Task.Factory.StartNew

Cheat Sheets – How To

July 10, 2017 36

Problem Solution

Create	a	task	wrapper	for	an	operation	or	
event

TaskFactory.FromAsync or	
TaskCompletionSource<T>

Support	cancellation CancellationTokenSource and	
CancellationToken

Report	progress IProgress<T>	and	Progress<T>

Handle	streams	of	data TPL	Dataflow	or	Reactive	Extensions

Synchronize	access	to	a	shared	resource SemaphoreSlim

Asynchronously	initialize	a	resource AsyncLazy<T>	*	- nitoasyncex.codeplex.com	

Async-ready	producer/consumer	structures TPL	Dataflow	or	AsyncCollection<T>

References

July 10, 2017 37

https://evolve.xamarin.com/session/56e1fe9ebad314273ca4d811
James	Clancey’s talk	at	Xamarin	Evolve	2016

https://codeblog.jonskeet.uk/2010/10/30/c-5-async-investigating-control-flow/

Any	of	Stephen	Toub’s blogs	for	Microsoft	on	TPL	and	Async-Await	- especially	for	advanced	topics		
https://blogs.msdn.microsoft.com/pfxteam/2013/01/28/psychic-debugging-of-async-methods/

Any	of	Stephen	Cleary’s	blogs	on	TPL	and	Async-Await	
http://blog.stephencleary.com/2013/11/there-is-no-thread.html

Any	of	John	skeets	blogs	on	TPL	and	Async-Await	

https://msdn.microsoft.com/en-us/library/dd449174(v=vs.110).aspx
Microsoft	documentation

http://www.michaelridland.com/xamarin/taskcompletionsource-xamarin-beautiful-async/

THANK YOU!

July 10, 2017 38

David Allen
Demystifying Async-Await

.Net Track • 10:00am • Room #204

Social
/in/David1Allen

Email
david.allen@bluemetal.com

